
DUALITY FOR COUPLES OF CONICS
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Abstract. Consider the couples of distinct proper non-empty
real projective conics. A rigid isotopy for such an object is a con-
tinuous deformation of the defining equations of the two conics, not
modifying the singularity of the intersection points. Each class of
rigid isotopy corresponds to a “configuration” of a couple of conics.

In the present paper, we show that if two couples of conics
are in the same configuration, so are the corresponding couples of
tangential conics. We make explicit the induced bijection between
the configurations of in the primal space and the configurations in
the dual space.
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1. introduction

We consider here real projective conics: the zero loci of real ternary
quadratic forms in CP

2. They can be identified with the real ternary
quadratic forms up to proportionality.

A proper conic is the zero locus of a non–degenerate quadratic form.
The goal of this paper is to answer to the following question: suppose

you know that some couple of conics is in a given configuration. Does
this determine the configuration of the associated tangential conics ?
The answer is affirmative, and the correspondence is made explicit
in section 5. Before, we start with making precise what we mean by
“configuration” (this is elucidated by means of a notion of rigid isotopy,
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Orbit I Ia Ib II IIa III IIIa IV V

real points 1111 − 11 211 2 22 − 31 4
imaginary points − 1111 11 − 11 − 22 − −

Table 1. The names of the nine strata. The strata
are characterized by the multiplicities of the real and
imaginary base points of each couple belonging to it.

section 2) and by some reminders about duality for conics (section 3).
We finish we an example of application (section 6).

2. Rigid isotopy for couples of proper real conics

The intersection of the two conics is called their base. It is, generi-
cally, a set of four points of CP

2. In the singular cases, some intersection
points are multiple, but always the intersection is a finite set of points
of CP

2, whose multiplicities add up to 4.
Classify the points obtained as an intersection of two real algebraic

curves as follows: say they are equivalent if there exist a local real
analytic isomorphism that sends one to the other. Then the points
obtained as an intersection of two distinct proper conics are totally
classified by their multiplicity (1, 2, 3 or 4) and their nature (real or
imaginary).

Let CQ2 be the space of couples of distinct proper real projective
conics with non-empty sets of real points. Classify the elements of
CQ

2
according to the nature of their base, that is the number of real

and imaginary points of each multiplicity. This decomposes CQ2 into
nine strata. See table 1 for the nomenclature used (taken from [4]).
A rigid isotopy class for a couple of distinct proper conics is a con-
nected component of some stratum. If two elements of CQ

2
, call them

(C1, C2) and (D1, D2), are in the same class, one says they are rigid

isotopic. This means that there exists some continuous deformation of
the equations of (C1, C2) which transforms them into the equations of
(D1, D2), and preserves at each moment the singularity of each point
in the base. This transformation itself – a continuous path in one class
– is called a rigid isotopy.

It was shown in [3] that if (C1, C2) and (D1, D2) are rigid isotopic,
there also exists an isotopy of the whole real projective plane RP

2

transforming R(C1) and R(C2), the sets of real points of C1 and C2,
into R(D1) and R(D2) respectively. Thus one can say that two couples
of conics that are rigid isotopic are in the same configuration.

The paper [3] also showed that there are 20 rigid isotopy classes. A
representant of each of the classes is drawn in Figure 1. There are two
kinds of classes. The symmetric classes have the following property:
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IN IS

IaN1 IaS IbN

IIN1 IIS IIaN1 IIaS

IIIN1 IIIS IIIaN1

IVN VN1

Figure 1. The rigid isotopy classes.

each time the couple (C1, C2) is in the class, so is the couple (C2, C1).
The other classes, the non–symmetric ones, go by pairs. Each time a
couple (C1, C2) is in one class of the pair, the couple (C2, C1) is in the
other class. Moreover, one of the class of the pair is characterized by
the fact that R(C1) lies inside1

R(C2), and the other class by the fact
that R(C2) lies inside R(C1).

The nomenclature is the following: the name of the rigid isotopy
class of a couple of conics starts with the name of the orbit of the
pencil it generates (as indicated in table 1), followed by a letter N or
S (whose meaning is explained in [3]). If the class is non-symmetric,
an index 1 or 2 is appended to indicate either that the first conic lies
inside the second, or the reciprocal.

1The real locus of a real proper conic cuts the real projective plane into two
connected components: the inside, homeomorphic to a disk, and the outside, home-
omorphic to a Möbius strip.
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Figure 1 doesn’t display the non-symmetric classes with index 2,
since they are obtained trivially from the same class with index 1.

3. Duality and conics

Any quadratic form f on a vector space V has a tangential quadratic

form: this is the quadratic f̃ form on the dual V ∗ of V that can be
defined as follows: if F is the symmetric matrix representing f in some
base, then the symmetric matrix representing f̃ in the dual base is
the matrix of the cofactors of F . This polynomial mapping induces a
mapping

C 7→ C∨

from the space of real projective conics of P2 to the space of real pro-
jective conics of the dual projective space P2∗. It is well-known that
the restriction of this latter to proper conics drawn in P2 induces a
bijection to the space of proper conics of P2∗. Moreover, its reciprocal
is the the similar bijection from P2∗ to P2∗∗ ∼= P2. That is, if C is
proper, then (C∨)∨ = C. Last, the points of C∨ represent lines of P

2.
If C is proper, then C∨ is the set of the tangents to C. We have also
an interpretation for the inside and the outside of C∨. Let L be a real
line of P2, considered as a point of P∗. Consider the case when L, seen
as a point of P

2∗, lies outside C∨. Then no real tangent to C∨ pass
through L. Back into P2, this means that no real point of C lies on L.
Similarly, L lies outside C∨ if and only if L cuts two times C.

See [2] for more details about duality for conics.

4. Rigid isotopy is preserved by duality

In this section, we check that the image of a rigid isotopy class for
couples of real conics in P2 is a rigid isotopy class for couples of real
conics in P

2∗. This means that the tangential map induces an involution
on the set of rigid isotopy classes. This involution will be made explicit
in section 5.

Call T the mapping C 7→ C∨ of section 3, defined on the set of
proper conics. We want to show that if θ is a rigid isotopy, then T ◦ θ
is also a rigid isotopy. The continuity of T ◦ θ is trivial, since T is
polynomial. The less trivial part consists in showing there is no change
in the numbers of real and imaginary base points of each multiplicity.

We start with the following result.

Lemma 1. Let C, D be two distinct proper conics. Let p be an inter-

section point of multiplicity k > 1. Let L be the common tangent at p
for C and D.

Then the tangential conics meet at L with multiplicity k and common

tangent p.
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Proof. Let [x : y : z] be homogeneous coordinates on CP
2. Let [X : Y :

Z] be the dual coordinates.
After convenient change of coordinates, the point p is (0 : 0 : 1) and

the tangent L is [y = 0]. Working in the affine chart [z = 1], the two
conics have local equations:

y = f(x), y = g(x),

where f and g are some functions analytic at 0 of order 2. The multi-
plicity of intersection k is the smallest degree where the Taylor expan-
sions of f and g differ.

In the dual space, this corresponds to the following situation: the
dual conics meet at (0 : 1 : 0) with common tangent [Z = 0]. In the
affine chart [Y = 1], the dual conics have parameterizations:

{
X = −f(x) + xf ′(x)
Z = −f ′(x)

,

{
X = −g(x) + xg′(x)
Z = −g′(x)

Since f has order 2, f ′ has order 1 and one can express x as an analytic
function of Z of order 1:

x = F (Z).

Substituting F (Z) for x in X = −f(x) + xf ′(x), one gets an analytic
function X = F2(Z) of order 2. The coefficient of Z i in its Taylor series
only depends on the coefficients of degrees ≤ i in the Taylor series of
f ′.

Similarly for g.
As a consequence, the Taylor series expansions of F2 and G2 coincide

up to order k, at least. Let K be the multiplicity of L as intersection
of the dual curves, we have established that K ≥ k.

Now the same construction can be done starting from the dual conics.
This gives the reciprocal inequality: K ≤ k, and the equality K = k
follows. �

Besides, if the conics C and D are real, and if the point p is real, then
the tangent L is real. Thus, the numbers of real and imaginary points
of each multiplicity > 1 are conserved. Because the number of simple
points is 4 minus the sum of multiplicities of the multiple points, the
global number of simple points (real and imaginary) is also conserved2.

This is enough for the following theorem.

Theorem 1. The tangential map sends a rigid isotopy to a rigid iso-

topy.

Proof. As remarked before, the difficulty is to show that the numbers of
real and imaginary base points of each multiplicity don’t change along
the image of the rigid isotopy.

2Nevertheless this doesn’t imply that the number of real simple points is con-
served. Actually this is not the case: remark for instance, in the next section, that
Classes IIS and IIaS are exchanged under duality
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class real int. imag. int. real c.t. imag. c.t.

INi 1111 1111
IaNi 1111 1111
IbNi 11 11 11 11
IINi 211 211
IIaNi 2 11 2 11
IIINi 22 22
IIIS 22 22

IIIaNi 22 22
IVN 31 31
VNi 4 4
IS 1111 1111
IaS 1111 1111
IIS 211 2 11
IIaS 2 11 211

Table 2. multiplicities of the real and imaginary inter-
section points (int.) and common tangents (c.t.).

Because of the remark after the proof of lemma 1, one has only
to check that the numbers of real and imaginary simple points don’t
change. But such a change would imply, at some point in the path, a
coalescence, and thus a change into the numbers of real and imaginary
multiple points. �

5. The involution induced by duality

As a consequence of the results of the previous section, the tangential
map induces an involution on the set of rigid isotopy classes. By testing
on representants, one gets the exact description of the involution (note
this is also obvious on drawings, remarking that the intersection points
of C∨

1
and C∨

2
correspond to the common tangents to C1 and C2).

Theorem 2. The tangential map induces the following involution on

the set of rigid isotopy classes:

• for every pair of classes of type Ni, the two members are ex-

changed: IN1 ↔ IN2, IaN1 ↔ IaN2, etc
• Class IVN is sent to itself.

• IS ↔ IaS.

• IIS ↔ IIaS.

Proof. Choose one representant of each class, and count the numbers of
intersection points and common tangents, real and imaginary, of each
multiplicity. The result is displayed in table 2 below. Remark that no
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two classes present the same data, except for pairs of associated non-
symmetric classes, and Classes IIIN and IIIS. The tangential map sends
a class to some class where the data concerning intersections points
have been exchanged with those concerning common tangents.

Remark also that if [the real locus of] some real proper conic C1

lies inside another real proper conic C2, then C∨

2
lies inside C∨

1
. This

is obvious after section 3. This shows that Class IIIN is mapped to
itself, as is Class IIIS; this also determines the images of the pairs of
non-symmetric classes: the two members are exchanged. �

6. An example of application

Let C1 and C2 be two real proper conics in configuration IS. Then
the intersection of their insides has two connected components. One
wants to find one point in each component, call them A and B.

We use the previous study to affirm that C∨

1
and C∨

2
are in configura-

tion IaS, that is: two conics with no real intersection. The pencil they
generate has three degenerate elements: one couple of real lines and
two couples of conjugate imaginary lines (see [3]). The couple of real
lines separates C∨

1
and C∨

2
. Back in the primal space, it corresponds to

a couple of real points A and B, one per component of the intersection
of the insides of C1 and C2, as looked for.

The computations of A and B are performed as follows: let f and g

be quadratic forms defining C1 and C2. Their tangential forms f̃ and

g̃ have matrices F̃ and G̃. Now consider the characteristic polynomial

of F̃ + uG̃:

Disc(y I − (F̃ + u G̃)) = y3 − νt(u) y2 + µt(u) y − φt(u).

The unique parameter u = u0 such that F̃ +uG̃ defines a couple of real
lines is characterized by:

φt(u) = 0 ∧ µt(u) < 0.

The polynomial φt has degree 3 in u, the polynomial µt has degree at
most 2. This way we got an exact semi-algebraic description (see [1])
of the points A and B we have been looking for. It is of interest to
note that our method works even if the equations of the conics depend
of parameters.

To make the method clearer, we consider a concrete example. Con-
sider the affine conics defined by the equations in x, y

(x2 + y2 − 4) + t xy + t2 x2 = 0,
(xy − 1) + t (x2 − y2) + t2 = 0,

depending on the parameter t. They are obviously deformations of
a circle and an hyperbola in configuration IS. We homogenize the
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equations to fit in our projective setting; thus we consider

f = (x2 + y2 − 4z2) + t xy + t2 x2,
g = (xy − z2) + t (x2 − y2) + t2 z2.

One finds, proceeding as explained in [3], that the two conics are in
configuration IS exactly when P (t) < 0, where

P (t) = 3 t6 − 16 t5 − 2 t4 + 8 t3 − 69 t2 + 8 t − 12.

The polynomial P has two real roots, one between 5 and 6, the other
one between −2 and −1.

One finds for A(t) and B(t) the points [x(t) : y(t) : z(t)] where the

(x(t)X + y(t)Y + z(t)Z) are the factors of f̃ + u(t) g̃, and u(t) is the
analytic function solution of φ(u) = 0 such that µ(u) < 0, where

φ(u) = A3(t) u3 + A2(t) u2 + A1(t) u + A0(t),
µ(u) = B2(t) u2 + B1(t) u + B0(t),

with

A3(t) = −t8 + 3/2 t6 − 1/16 t4 − 3/8 t2 − 1/16,
A2(t) = 3/4 t8 + 4 t7 − 5/16 t6 − t5

−11/8 t4 − 5/2 t3 + 11/16 t2 − 1/2 t + 1/4,
A1(t) = −3 t7 − 5/2 t5 + 12 t4 + 7/2 t3 + 19 t2 + 2 t + 4,
A0(t) = 9 t4 + 24 t2 − 16.

and
B2(t) = −t6 + 7/4 t4 − 1/2 t2 − 1/4,
B1(t) = 4 t5 + 4 t4 − 2 t3 + 2 + 9 t2 − 2 t,
B0(t) = −3 t4 + 2 t2 + 8.

Suppose one wants to find the first terms of the Puiseux expansion
of this solution for t near from 3. Set s = t − 3. For s = 0, one finds
that the u which makes φ = 0 and µ < 0 is

u0 =
57 − 2

√
1099

74
.

After examination of the Newton diagram of F (v, s) = φ(u0 +v, 3+ s),
one sees that the Puiseux expansion of u(s) is actually a Taylor series.
One calculates easily the first terms:

u(s) = u0 +

(
5725

81326
− 85413

162652
u0

)
s

+

(
7584189175

26455673104
u0 −

854202513

13227836552

)
s2 + O

(
s3

)

One deduces that the two affine points (x(s), y(s)) are such that

−x(s)2 = −C1(s) / C4(s),
−y(s)2 = −C3(s) / C4(s),

−2x(s) y(s) = C2(s) / C4(s).
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with

C1(s) = −4 + (−24 − s3 − 9 s2 − 26 s)u,
C2(s) = (−8 − s2 − 6 s)u + 12 + 4 s,
C3(s) = (24 + s3 + 9 s2 + 26 s)u − 40 − 4 s2 − 24 s,
C4(s) = (−37/44 − s2 − 6 s)u + 31/44 + 3/4 s2 + 9/2 s.

One deduces that

x(s) = ε
√
−C1(s) / C4(s),

y(s) = −ε
√
−C3(s) / C4(s),

with ε = ±1. It is easy to get the first terms of the Taylor expansions.
For instance,

x(s) = x0 (1 + x1 s + x2 s2 + O (s3)) ,
y(s) = y0 (1 + y1 s + y2 s2 + O (s3)) ,

with

x0 = 4

√
−892 u0 + 82

4371
, x1 = − 34136731

192149160
+

8324536

24018645
u0,

x2 =
56467556991933

1897344567336260
u0 +

1409352180577583

60715026154760320
,

and

y0 = −4

√
−736 u0 + 1226

4371
, y1 =

678535

38429832
− 2848157

9607458
u0,

y2 = − 630387301227139

36429015692856192
+

642658831396033

4553626961607024
u0.
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Galligo for stimulating questions, which motivated the redaction of this
paper.

References

[1] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real

algebraic geometry, volume 10 of Algorithms and Computation in Mathematics.
Springer-Verlag, Berlin, 2003.
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