Diagonally symmetric polynomials of the roots of some
systems of equations

Emmanuel Briand

March 31%¢, 2006

Abstract

We present two situations in which the diagonally symmetric polynomials of the
n roots of a system of polynomial equations depend in a simple way on the coef-
ficients of the equations: for Grobner bases with prescribed leading terms, and for
zero—dimensional strict complete intersections. The results are independent on the
characteristic of the ground field.

Introduction

The symmetric polynomials of the roots of a monic univariate polynomial are the elements
of the ring generated by its coefficients (that are, up to the sign, the elementary symmetric
polynomials in the roots). At the end of the XIX-th century, illustrious mathematicians
(Schléfli [6], Cayley [4]) looked for similar results concerning systems of polynomial equations
with finitely many solutions. They introduced, as appropriate analogs of the symmetric
polynomials, the diagonally symmetric polynomials. In this note we present some situations
in which the diagonally symmetric polynomials in the roots of some systems of polynomial
equations can be expressed simply in terms of the coefficients of the equations.

1 Diagonally Symmetric Polynomials

The diagonally symmetric polynomials are the polynomial invariants of X n matrices under
the symmetric group &,, acting by permutation of the columns of the matrices. Let z;(a;)
be the coefficients of the matrix, where the ¢’s are the row indices and the j’s are the column
indices. We can see the a;’s as points in the r—dimensional affine space, and the x;’s as the
coordinate functions. The diagonally symmetric polynomials then appear as the polynomial
functions on multisets of points of length n. Some classical families of symmetric polynomials
have diagonally symmetric analogues.

The elementary diagonally symmetric polynomials e, for o € N™ (the set of non-zero
vectors with r non—negative integer coordinates) and |a| < n are defined by the generating



function: .
1+ et =[] L(a;)
« j=1

where L is the linear form 1 + t121 + ... + t,2,. This generating function is known in
computer algebra as the (deshomogenized) Chow form oof the multiset of the a;’s.

Th power sums p, for a € N™ are p, = 22:1 x%(a;). If the a;’s are the solutions of a
system of equations, these objects are known as the traces of the monomials.

The monomial functions are the sums of all monomials in the z;(a;)’s in some orbit
under &,,. They can be defined as well by means of a generating function in indeterminates

Ug, @ € N™:
meum = H S(ay) (1)
X j=1

where S is the polynomial 1+ _ - uaX®; the N's are the multisets of elements of N"*

(“vector partitions” or “multipartite partitions”) of length at most n; ul is the product of
the ua’s for a term of X. The combinatorialist will identify it as an avatar of (a diagonally
symmetric analogue of) a Cauchy formula. The computer algebraist will recognize in its
truncations (obtained from So =1+ " quax®, € finite) the generalized Chow forms of
the a;’s.

2 Diagonally symmetric functions of the roots of systems of
equations

We consider systems of polynomial equations in the indeterminates 1, ..., x, with coeffi-
cients in some field K. The solutions of the system are always considered in I.”, where L is
an algebraically closed extension of K. Suppose we fix some special shape to the systems,
so that they all have finitely many zeros, the same number n (taking into account multiplic-
ities). It is then meaningful to consider the diagonally symmetric polynomials of the roots
and to inquire about the way they depend on the coefficients of the system.

Note that if we want characteristic—free answers, we should be careful. For instance, it is
not enough to find formulas expressing the power sums in terms of the coefficients. Indeed, as
in the case of symmetric polynomials, the power sums don’t generate the ring of diagonally
symmetric polynomials in small characteristic. But worst, even the elementary diagonally
symmetric polynomials may not be a generating family ! (see [3]). On the contrary, the
monomial functions are always a linear basis, thus it is enough to know how to express the
monomial function in terms of the coefficients.

We present from [2] results for two kinds of systems: Grobner bases with prescribed
leading terms, and zero-dimensional strict complete intersection. In both cases, the strategy
consists in using the fact that a Generalized Chow Form is the determinant of an endo-
morphism of the affine coordinate ring of the zeros of the system: the endomorphism of



multiplication by the corresponding Sq. This permits us to provide a formula for each
monomial function in terms of the coefficients of the system.

2.1 Grobner bases

Let < be a monomial order on the monomials in zq, ..., z,. Let x?M, ... xB*) be a
collection of monomials, containing a power of each indeterminate. We consider the systems
of equations:

fi=...=fr=0
where A ‘
fi=xP® ¢ Z aDx®.
x®<xP (@)

These systems are the points of some affine space A (the coordinates are the agf )’s). Consider
those systems that are a Grobner basis (for <) of the ideal they generate. They form an
algebraic subset G of A (see [2], Corollaire 4.4). Moreover, all systems in G have the same
number of solutions, say n (the cardinal of the set M of monomials that can’t be divided by
any of the xﬂ(i)’s). Then it is meaningful to consider the diagonally symmetric polynomials

of the roots of the systems in G. Then [2]:

Theorem 1. Any diagonally symmetric polynomial in the roots of the systems in G is a
polynomial function on G.

2.2 Strict complete intersections

A strict complete intersection is a zero—dimensional ideal that is a complete intersection
and have no zero at infinity in some compactification of the affine space (a weighted projec-
tive space). The existence of an associated resultant provides us explicit formulas for the
diagonally symmetric polynomials of the roots.

More precisely, let w € (N*)". It defines a graduation on K[zy,...,z,| determined by:
deg, X; = w; for all ¢. The ideal I is a strict complete intersection for the weight w in
it admits a generating set {f1,..., fr} such that the zero locus of hy, ..., h,, the leading
homogeneous components of the f;’s, have 0 as only common zero.

Let d = (dy,...,d,) € (N*)". Let B be the set of all polynomial systems fi,..., f, as
above with h; having (weighted) degree d;. Let A be the anisotropic resultant [5] associated
to the weight w and degrees d, evaluated the h;’s. Let W be the Zariski open subset of
B defined by A # 0. This is exactly the set of the systems in B that are a presentation
of a strict complete intersection for w. Then all the systems in W have the same number
of solutions (couting multiplicities), that is n = [[,(d;/w;); we can consider the diagonally
symmetric polynomials of the roots of these systems. Then we have ([2]), as a consequence
of the Poisson formula for anisotropic resultants:

Theorem 2. Any diagonally symmetric polynomial in the roots of the systems in W is of
the form P/A* for some polynomial function P of the coefficients and non-negative integer
s.



2.3 Systems with both properties

Interestingly, for zero—dimensional systems that are at the same time a monic Grébner basis
of the ideal they generate, and a presentation of this ideal as a strict complete intersection,
much more is known about the diagonally symmetric polynomials of the roots (in charac-
teristic zero). Such systems are those of the form f; = ... = f, = 0 where each f; has as
leading term (for some fixed monomial order) some power of z;. Aizenberg and Kytmanov
[1] showed that for these systems, the power sums of the roots are obtained as the coeffi-
cients of some series expansion of the rational function xy---x, J/fi --- f, where J is the
Jacobian determinant of the f;’s. Consider specially the triangular systems

g1(z1) = g2(z1,22) = ... = gr (21, .y 2r) =0
where each g;, seen as polynomial in z;, has leading coefficient ¢;(x1, ..., x;_1) such that the
systems g1 = ... = ¢g;—1 = ¥; = 0 have no solution. Using Aizenberg-Kytmanov’s identity,

one gets that for triangular systems with prescribed degrees, the power sums are rational
functions of the coefficients.

Let us consider an example: r = 2, with = = 21, ¥y = 9, and ¢ = asx?® + a1z + ao,
g2 = (@2® + qux + qo)y? + (5222 + 512 + s0)y + (t2x® + t1x + ty). Then the power sum pq;
is N/(a2R), where

2
N = ays0a2”qo + a150a2q2a0 — 3 apai152a2qo
2 2 2 2
+ s2a0”q2a1 + agsiaza1q1 + 2 aps1a2”qo — 2 s1a2g2a0” — 2 apaz”soq1
2 3 2 2
+ 2ags2a0”°q1 + a1°S2q0 — apa1”S2q1 — a1”s1a2qo

and R is the resultant of g; and fy = ¢u2? + g1 + qo.
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