On a matrix function interpolating between determinant and permanent

Emmanuel BRIAND

Departamento Matemáticas, Estadística y Computación, Universidad de Cantabria, Facultad de Ciencias, Avenidad de Los Castros s/n, 39005 Santander, SPAIN.

E-mail adress: emmanuel.briand@gmail.com

Phone: + 34 942 201 440 Fax: +34 942 201 402

Abstract

A matrix function, depending on a parameter t, and interpolating between the determinant and the permanent, is introduced. It is shown this function admits a simple expansion in terms of determinants and permanents of sub-matrices. This expansion is used to explain some formulas occurring in the resolution of some systems of algebraic equations.

Keywords: matrix functions, multisymmetric functions, zero-dimensional algebraic systems.

MSC: 05E05, 13P10, 15A15.

1 A function interpolating between permanent and determinant

Given a permutation σ of $\{1, \ldots, r\}$, denote with $\mathcal{O}(\sigma)$ the set of its orbits, and define the following class function with parameter:

$$\gamma_t(\sigma) = \prod_{\omega \in \mathcal{O}(\sigma)} \left(1 - t^{|\omega|}\right).$$

Here $|\omega|$ is the cardinality of ω . One can now consider the following function, defined upon the square matrices of order r:

$$\Gamma_t(M) = \sum_{\sigma \in \mathfrak{S}_r} \gamma_t(\sigma) \prod_i m_{i,\sigma(i)}. \tag{1}$$

The object of this note is the following identity:

THEOREM 1

$$\Gamma_t(M) = \sum (-t)^{|I|} \det M[I] \operatorname{per} M[I^*]. \tag{2}$$

where the sum is carried over the subsets I of $\{1, \ldots, r\}$.

The notation M[I] refers to the submatrix of M obtained by keeping only the lines with index in I, and as well the columns with index in I; and I^* is the complement of I.

Proof: Expanding the product

$$\gamma_t(\sigma) = \prod_{\omega \in \mathcal{O}(\sigma)} (1 - t^{|\omega|}),$$

one gets

$$\sum_{\mathcal{U}\subset\mathcal{O}(\sigma)} (-t)^{\sum_{\omega\in\mathcal{U}}|\omega|}.$$

Associate to each subset \mathcal{U} of $\mathcal{O}(\sigma)$ the union I of the orbits that are elements of \mathcal{U} . This way each subset stabilized by σ is obtained exactly once. The permutation σ induces a permutation σ_I of I and a permutation σ_{I^*} of its complement; the signature of σ_I is $(-1)^{|I|-|\mathcal{U}|}$. Thus the product is also equal to

$$\sum_{I|\sigma(I)=I} (-t)^{|I|} \, \varepsilon(\sigma_I).$$

Using this in the formula (1) where $\Gamma_t(M)$ is defined, it comes:

$$\sum_{\sigma \in \mathfrak{S}_r, I \mid \sigma(I) = I} (-t)^{|I|} \varepsilon(\sigma_I) \prod_i m_{i,\sigma(i)} ,$$

which decomposes into

$$\sum_{\sigma \in \mathfrak{S}_r, I \mid \sigma(I) = I} (-t)^{|I|} \varepsilon(\sigma_I) \prod_{i \in I} m_{i, \sigma_I(i)} \prod_{i \in I^*} m_{i, \sigma_{I^*}(i)}$$
$$= \sum_{I} (-t)^{|I|} \det M[I] \operatorname{per} M[I^*]$$

And this is the announced result.

The function Γ_t interpolates between the permanent and the determinant because:

- when t = 0, that is: when considering the constant term, one obtains the permanent.
- when $t \to -\infty$, that is: when considering the leading coefficient, that of t^n , one obtains the determinant.

Another interesting specialization is obtained with t = 1; it gives an identity due to Muir ([1]):

$$0 = \sum_{I} (-1)^{|I|} \det M[I] \operatorname{per} M[I^*].$$

Yet another specialization, t = 1/2, appears in the study of certain systems of algebraic equations, where the identity (2) happens to be useful. This is what we expose in the next part.

2 An application to some systems of polynomial equations

Let a system of r quadratic equations $F_1 = \ldots = F_r = 0$ in r unknowns X_1, \ldots, X_r , with the following particular shape:

$$F_i = X_i^2 + \sum_{j=1}^r u_{i,j} X_j + c_i.$$

Such a system has always finitely many roots, namely 2^r if each root is counted as many times as indicated by its multiplicity. We'll denote with U the matrix of the u_{ij} . One wants to calculate the multisymmetric power sums of the multiset of the roots of this system¹, denote them with p_{α} for $\alpha \in \mathbb{N}^r$. This means that p_{α} is the sum of the evaluations of the monomial $X_1^{\alpha_1} \cdots X_r^{\alpha_r}$ at the roots (repeated when there are multiplicities). The power sums which may be difficult to obtain are the first ones: the p_{α} with α with

¹Such analogues of the symmetric functions where introduced by several authors at the end of the nineteenth century. See [2] for more references and specially connections to systems of polynomial equations with finitely many solutions.

0-1 coordinates²). These first power sums may be computed using the identities of Aizenberg and Kytmanov ([3])³:

$$\sum_{\alpha \in \mathbb{N}^r} \frac{p_{\alpha}}{X^{\alpha}} = \Omega \mathcal{S} \frac{X_1 \cdots X_r \operatorname{Jac}}{F_1 \cdots F_r}$$
 (3)

In the right-hand side of the formula, Jac is the Jacobian of F_1, \ldots, F_r ; the S symbol means that a series expansion, following the decreasing total degree, is applied to the rational fraction (this is possible because the denominator has exactly one term of maximal total degree, that is: $X_1^2 \cdots X_r^2$), and next that all the Laurent monomials with numerator are removed from this expansion (Ω symbol).

Applying this to the first examples of the considered systems, one finds that

• for r=1,

$$p_1 = -u_{11},$$

• for r=2,

$$p_{11} = u_{11}u_{22} + 3u_{12}u_{21},$$

• for r = 3,

$$p_{111} = -u_{11}u_{22}u_{33} - 3u_{11}u_{23}u_{32} - 3u_{13}u_{22}u_{33} - 3u_{12}u_{21}u_{33} - 7u_{12}u_{23}u_{31} - 7u_{13}u_{21}u_{32}.$$

These observations, and a few next ones, lead to conjecture that

$$p_{11\cdots 1} = (-1)^r \sum_{\sigma \in \mathfrak{S}_r} \prod_{\omega \in \mathcal{O}(\sigma)} (2^{|\omega|} - 1) \prod_i u_{i,\sigma(i)}. \tag{4}$$

Making use of the identity (2), we'll prove the above formula, and the more general one:

THEOREM 2

$$p_A = (-1)^{|A|} 2^{n-|A|} \sum_{\sigma \in \mathfrak{S}_A} \prod_{\omega \in \mathcal{O}(\sigma)} (2^{|\omega|} - 1) \prod_{i \in A} u_{i,\sigma(i)}.$$
 (5)

$$p_{(\alpha_1+2),\alpha_2,...,\alpha_r} + \sum_{j} u_{1,j} \ p_{\alpha_1,...,(1+\alpha_i),...,\alpha_r} + c_1 \ p_{\alpha} = 0$$

 $^{^2}$ The other power sums are easily deduced from the first ones. For instance, the first equation of the system yields the inductive formula

³Such identities were first written by Jacobi, in [4].

Here was made the following abuse of notation: given a subset A of $\{1, \ldots, n\}$, it was also denoted with A the vector whose i-th coordinate is 1 if $i \in A$, 0 if $i \notin A$.

Proof: It is convenient to re-write the quotient under the form:

$$\frac{\operatorname{Jac}/(X_1\cdots X_r)}{(F_1/X_1^2)\cdots (F_r/X_r^2)}$$

so that each of its term lies in the sub-algebra of Laurent monomials generated by the $1/X_i$ and the X_i/X_i^2 ; that is on the one hand

$$\frac{\operatorname{Jac}}{X_1 \cdots X_r} = \sum_{I} 2^{n-|I|} \frac{\det U[I]}{X^I},$$

and in the other

$$\frac{F_i}{X_i^2} = 1 + \sum_j u_{i,j} \frac{X_j}{X_i^2} + \frac{c_i}{X_i^2}.$$

Now we may work *modulo* the ideal generated by the $1/X_i^2$ and the $(X_j/X_i^2)^2$, since we are only interested in the monomials with shape $1/X^A$, which all lie outside this ideal.

One has then

$$\frac{F_i}{X_i^2} \equiv 1 + \sum_j u_{i,j} \frac{X_j}{X_i^2} \equiv \prod_j \left(1 + u_{i,j} \frac{X_j}{X_i^2} \right)$$

which has as inverse

$$\prod_{j} \left(1 - u_{i,j} \frac{X_j}{X_i^2} \right).$$

Thus it remains to compute the terms in $1/X^A$ in the expression:

$$\sum_{I} 2^{n-|I|} \frac{\det U[I]}{X^{I}} \prod_{i,j} \left(1 - u_{i,j} \frac{X_{j}}{X_{i}^{2}} \right)$$

and in this aim, it is now sufficient to work *modulo* the module over the polynomials in $1/X_1, \ldots, 1/X_r$ generated by the X_j/X_i^2 for $i \neq j$. One has then:

$$\prod_{i,j} \left(1 - u_{i,j} \frac{X_j}{X_i^2} \right) \equiv \sum_{I} (-1)^{|I|} \frac{\operatorname{per} U[I]}{X^I}$$

because the $X^J/(X^I)^2$ that appear in the expansion of the product are in the sub-module unless I=J. Finally the coefficient of $1/X^A$ is given by

$$\sum_{I \subset A} 2^{n-|I|} \det U[I](-1)^{|A|-|I|} \operatorname{per} U[A \setminus I]$$

and one recognizes in it

$$(-1)^{|A|} 2^n \Gamma_{1/2}(U[A]),$$

which re-writes easily as formula (5).

References

- [1] T. Muir. A relation between permanents and determinants. *Proceedings* of the Royal Society of Edinburgh, 22:134–136, 1897.
- [2] Emmanuel Briand. *Polynômes multisymétriques*. Thèse de doctorat, Université de Rennes 1 et Universidad de Cantabria, 2002.
- [3] L. A. Aĭzenberg and A. M. Kytmanov. Multidimensional analogues of Newton's formulas for systems of nonlinear algebraic equations and some of their applications. *Sibirsk. Mat. Zh.*, 22(2):19–30, 1981. English transl. in *Sib.Math.J.*, 22(1981),180–189.
- [4] C. Jacobi. Theoremata nova algebrica systema duarum aequationum inter duas cariabiles propositarum. *J. Reine Angew. Math.*, 14:281–288, 1835. in latin.